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4.2 Rolle's Theorem & The Mean Value Theore

The Extreme Value Theorem states: +h ot oo
continuous funchion on a closed

nterval must have both a waximum
onde . mIinimum .

¥ Can be ab the endpoints

Rolle's Theorem gives:
conduhions o quarantee the cxristence
of an extreme value on the interior

ot @ closed inforval .

Rolle's Theorem:

Let f be continuous on the closed interval [a, b]
and differentiable on the open interval (a, b).

If F(a) :‘FG:\\); then +here /s ot least

one Number © in (ab) Such that
fioy=0.
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Example: Determine whether Rolle's Theorem can be applied to f
on the closed interval [a, b]. If Rolle's Theorem can be applied,
find all values of ¢ in the open interval (a, b) such thatf'(c) = 0.

1. f(x)=x2-5x+4, [1,4]
’}\IS I< avd‘\y\mous

This 1S dulferankoble.

F=1-5+4=0
2= lb-20+4 =0
£y =5y /
1, Rolle's Theorem Can be applied. .
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The Mean Value Theorem:
If f is continuous on the closed interval [a, b] and
differentiable on the open interval (a, b), then there e
exists a number c in (a, b) such that:
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Example: Determine whether the Mean Value Theorem
can be applied to / on the closed interval [a, b]. Find
the values of c that satisfy the Mean Value Theorem.

3. ) =\x-2, 2, 6]

This Is ¢avihnusus.

This is differentable .

4 fx) = [4,2]
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5. Two stationary patrol cars equipped with radar are 5 miles apart on a
highway. As a truck passes the first patrol car, its speed is clocked at
55 mph. Four minutes later, when the truck passes the second patrol car

its speed is clocked at 50 mph. Prove that the truck must have exceeded

the speed limit (of 55 miles per hour) at some time durmgi‘the 4 minutes.
4 mn

e = g hr

A = distane intorms of time
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